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Abstract

In reinforcement learning (RL), it is common to apply techniques used broadly in1

machine learning such as neural network function approximators and momentum-2

based optimizers [1, 2]. However, such tools were largely developed for super-3

vised learning rather than nonstationary RL, leading practitioners to adopt target4

networks [3], clipped policy updates [4], and other RL-specific implementation5

tricks [5, 6] to combat this mismatch, rather than directly adapting this toolchain6

for use in RL. In this paper, we take a different approach and instead address the7

effect of nonstationarity by adapting the widely used Adam optimiser [7]. We first8

analyse the impact of nonstationary gradient magnitude—such as that caused by9

a change in target network—on Adam’s update size, demonstrating that such a10

change can lead to large updates and hence sub-optimal performance. To address11

this, we introduce Adam with Relative Timesteps, or Adam-Rel. Rather than using12

the global timestep in the Adam update, Adam-Rel uses the local timestep within13

an epoch, essentially resetting Adam’s timestep to 0 after target changes. We14

demonstrate that this avoids large updates and reduces to learning rate annealing in15

the absence of such increases in gradient magnitude. Evaluating Adam-Rel in both16

on-policy and off-policy RL, we demonstrate improved performance in both Atari17

and Craftax. We then show that increases in gradient norm occur in RL in practice,18

and examine the differences between our theoretical model and the observed data.19

1 Introduction20

Reinforcement Learning (RL) aims to learn robust policies from an agent’s experience. This has21

the potential for large scale real-world impact in areas such as autonomous driving or improving22

logistic chains. Over the last decade, a number of breakthroughs in supervised learning—such as23

convolutional neural networks and the Adam optimizer—have expanded the deep learning toolchain24

and been transferred to RL, enabling it to begin fulfilling this potential.25

However, since RL agents are continuously learning from new data they collect under their changing26

policy, the optimisation objective is fundamentally nonstationary. Furthermore, temporal difference27

(TD) approaches bootstrap the agent’s update from its own value predictions, exacerbating the28

nonstationarity in the objective function. This is in stark contrast to the stationary supervised learning29

setting for which the deep learning toolchain was originally developed. Therefore, to apply these30

tools successfully, researchers have developed a variety of implementation tricks on top of this base31

to stabilise training [8, 6, 5]. This has resulted in a proliferation of little-documented design choices32

that are vital for performance, contributing to the reproducibility crisis in RL [9].33

We believe that in the long term, a more robust approach is to augment this toolchain for RL, rather34

than building on top of it. To this end, in this paper we examine the interaction between nonstationarity35

and the Adam optimizer [7]. Adam’s update rule, where equations are applied element-wise (i.e. per36
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parameter), is defined by37

mt = β1mt−1 + (1− β1)gt, m̂t =
mt

(1− β1
t)
,

vt = β2vt−1 + (1− β2)gt
2, v̂t =

vt

(1− β2
t)
,

ut =
m̂t√
v̂t + ϵ

, θt = θt−1 − αut.

Here, gt is the gradient, θt a parameter to be optimized, and α the learning rate. The resulting update38

is the ratio of two different momentum terms: one for the first moment, mt, and one for second39

moment, vt, of the gradient. These terms use different exponential decay coefficients, β1 and β2.40

Under stationary gradients, the (1− βi) weighting ensures that, in the limit, the overall magnitude of41

the two momenta is independent of the value chosen for each of the coefficients. However, since both42

momentum estimates are initialised to 0, they must be renormalised for a given (finite) timestep t, to43

account for the “missing parts” of the geometric series [7], resulting in v̂t and m̂t.44

Crucially, t counts the update steps since the beginning of training and thus bakes in the assumption45

of stationarity that is common in supervised learning. In particular, this renormalisation breaks down46

if the loss is nonstationary. Consider a task change late in training, which results in gradients orders47

of magnitudes higher than those of the prior (near convergence) task. Clearly, this is analogous to the48

situation at the beginning of training where all momentum estimates are 0. However, the t parameter,49

and therefore the renormalisation, does not account for this.50

In this paper, we demonstrate that changes in the gradient scale can lead to large updates that51

persist over a long horizon. Previous work [10, 11] has suggested that old momentum estimates52

can contaminate an agent’s update and propose resetting the entire optimizer state when the target53

changes as a solution. However, by discarding previous momentum estimates, we hypothesise54

that this approach needlessly sacrifices valuable information for optimization. Instead, we propose55

retaining momentum estimates and only resetting t, which we refer to as Adam-Rel. In the limit of56

gradient sparseness, we show that the Adam-Rel update size remains bounded, converging to 1 in57

the limit of a large gradient, unlike Adam. Furthermore, if such gradient magnitude increases do not58

occur, Adam-Rel reduces to learning rate annealing, a common method for stabilising optimization.59

When evaluated against the original Adam and Adam with total resets, we demonstrate that our60

method improves PPO’s performance in Craftax-Classic [12] and the Atari-57 challenge from the61

Arcade Learning Environment [13]. Additionally, we demonstrate improved performance in the62

off-policy setting by evaluating DQN on the Atari-10 suite of tasks [14]. We then examine the63

gradients in practice and show that there are significant increases in gradient magnitude following64

changes in the objective. Finally, we examine the discrepancies between our theoretical model and65

observed gradients to better understand the effectiveness of Adam-Rel.66

2 Background67

2.1 Reinforcement Learning68

Definition Reinforcement learning agents learn a policy π in a Markov Decision Process [15, MDP],69

a tuple M = ⟨S,A, T ,R, γ⟩ where S is the set of states, A is the set of actions, T : S ×A → P(S)70

is the transition function, R : S × A → R is the reward function and γ is the discount factor. At71

each timestep t, the agent observes a state st ∈ S and takes an action at drawn from π(·|st) before72

transitioning to a new state st+1 ∈ S and receiving reward rt drawn from R(st, at). The goal of the73

agent is to maximise the expected discounted return Eπ,T [
∑∞

t=0 γ
trt].74

Nonstationarity in RL In contrast with supervised learning, where a single stationary objective is75

typically optimised, reinforcement learning is inherently nonstationary. Updates to the policy induce76

changes not only in the distribution of observations seen at a given timestep, but also the return77

distribution, and hence value function being optimised. This arises regardless of how these updates78

are performed. However, one particular reason for nonstationarity in RL is the use of bootstrapped79

value estimates via TD learning [15], which optimises the below objective80

L(θ) = [sg {rt + γV π
θ (st+1)} − V π

θ (st)]
2
,
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where sg is the stop-gradient operator. In this update, the target rt + γV π
θ (st+1) depends on the81

parameters θ and therefore changes as these are updated.82

These target changes can either be more gradual, as in the case of continuous updates to the value83

function in TD learning, or more abrupt, as in the case of the use of target networks in DQN.84

Sequentially Optimized Stationary Objectives In this work, we focus on abrupt objective changes;85

changes of objectives that do not involve a smoothing method such as Polyak averaging [1], and the86

resulting sudden change of supervised learning problem. More explicitly, we consider optimising87

a stationary loss function L(θ, ϕ), where θ are the parameters to be optimised and ϕ is the other88

parameters of the loss function (such as the parameters of a value network), which are not updated89

throughout optimisation, but does not include the training data.90

We consider a setting where at a certain timestep t in our training, we transition from optimising91

L(θt, ϕ1) to optimising L(θt+1, ϕ2) for some ϕ1, ϕ2. Such individual objectives are still non-92

stationary. For example, significant changes in the policy would induce changes in the data dis-93

tribution, which would then affect the underlying loss landscape, but we do not consider such94

non-stationarity in this work.95

This setting is very common throughout RL. Bootstrapped value estimates are the most common96

cause of this, but it also occurs in PPO’s actor update, where each new rollout induces a different97

supervised learning problem due to the actor and critic updates. This is optimised for a fixed number98

of updates before collecting new data.99

We refer to these sequences of supervised learning problems as sequentially-optimised stationary100

objectives. In this work, we use this framing to propose an approach that is consistent throughout101

each stationary period of optimization and applies corrections to make optimization techniques valid102

when nonstationarity is introduced via objective changes. Bengio et al. [11] propose the gradient103

contamination hypothesis, which states that current optimizer momentum estimates can point in the104

opposite direction to the gradient following a change in objective, thereby hindering optimization. A105

previous approach to this problem is that of Asadi et al. [10], where they propose resetting Adam’s106

momentum estimates and timestep to 0 throughout training. We refer to this method as Adam-MR.107

Proximal Policy Optimization Proximal Policy Optimization [4, PPO] is a policy optimisation108

based RL method. It uses a learned critic V π
ϕ trained by a TD loss to estimate the value function, and109

a clipped actor update of the form110

min
[
clip

(
r(θ,t), 1± ϵ

)
Aπ(st, at), r(θ,t)A

π(st, at)
]
, (1)

where the policy ratio r(θ,t) = π̃θ(at|st)
π(at|st) is the ratio of the stochastic policy to optimise π̃θ and π,111

the previous policy. Aπ is the advantage, which is typically estimated using generalised advantage112

estimation [16]. Clipping the policy ratio aims to avoid performance collapse by preventing policy113

updates larger than ϵ.114

Optimisation of the PPO objective proceeds by first rolling out the policy to collect data, and then115

iterating over this data in a sequence of epochs. Each of these epochs splits the collected data into a116

sequence of mini-batches, over which the above update is calculated.117

2.2 Momentum-Based Optimization118

Momentum [1, 2] is a method for enhancing stochastic gradient descent by accumulating gradients in119

the direction of repeated improvement. The typical formulation of momentum for each element i is120

mi
t = βmi

t−1 + git,

θit = θit−1 − αmi
t,

where β is the momentum coefficient, gt ∈ Rn is the gradient at the current step, mt ∈ Rn is the121

gradient incorporating momentum, α is the scalar learning rate and θ ∈ Rn are the parameters to122

be optimised. With momentum, update directions with low curvature have their contribution to the123

gradient amplified, considerably reducing the number of steps required for convergence.124

In the introduction, we described the update equations for Adam [7], the most popular optimizer that125

uses momentum. Adam’s update is designed to keep its updates within a trust region, which depends126

on a learning rate α.127
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Figure 1: Update size of Adam and Adam-
Rel versus k when considering nonstationary
gradients. Assumes that optimization starts at
time −t′, which is large, and that the gradi-
ents up until time 0 are g and then there is an
increase in the gradient to kg.

Algorithm 1 Pseudocode for PPO with Adam, Adam-
Rel, and Adam-MR.
m0 = 0, v0 = 0, t = 0 ▷ Initialise Adam state
j = 0 ▷ Initialise number of updates to 0
for k = 1 to K do

Rollout policy πθk to collect batch D
t = 0
t = 0,mj = 0, vj = 0
for epoch = 1 to E do

for mini-batch B in D do
gj = ∇θj−1

[
LPPO(θj−1) + LTD(θj−1)

]
j = j + 1
t = t+ 1
mj = β1mj−1 + (1− β1)gj
vj = β2vj−1 + (1− β2)gj

2

m̂j =
mj

(1−β1
t)

v̂j =
vj

(1−β2
t)

θj = θj−1 − α
m̂j√
v̂j+ϵ

end for
end for

end for

3 Nonstationary Optimization with Adam128

We now investigate the effect of nonstationarity on Adam by analysing its update rule after a sudden129

change in gradient. As a simplified model of gradient instability, we assume optimization with130

Adam starts at timestep t = −t′ with a constant gradient gi−t′ = g, 0 < g < ∞ until timestep 0.131

Following t = 0, we model instability by increasing the gradient by a factor of k, as might occur in a132

nonstationary optimization setting. This gives133

gjt =

{
g, −t′ ≤ t < 0,

kg, t ≥ 0.
(2)

For larger values of t′, the short term effects of Adam’s initialisation on the momentum terms dissipate134

and m̂t and v̂t converge to stable values. By taking the limit of t′ → ∞, we investigate the effect of a135

sudden change in gradient git on the update size ui
t after a long period of training. This allows for any136

effects from the initialisation of momentum terms m̂−t′,t and v̂−t′,t to dissipate:137

Theorem 3.1. Assume that ϵ = 0. Let git be defined as in Equation (2) and m̂i
−t′,t and v̂i−t′,t be the138

momentum terms at timestep t given Adam starts at timestep −t′. It follows that:139

lim
t′→∞

ui
t = lim

t′→∞

m̂i
−t′,t√
v̂i−t′,t

=
β1

t+1 + k(1− β1
t+1)√

β2
t+1 + k2(1− β2

t+1)
. (3)

140

Proof. See Appendix A.141

For large k, Theorem 3.1 proves that the element-wise momentum term after the change in gradient142

at t = 0 is approximately 1−β1√
1−β2

. For the most commonly used values of β1 = 0.9 and β2 = 0.999,143

this is
√
10, which is much larger than the intended unit update which Adam is designed to maintain.144

The top plot in Figure 1, which shows the Adam update size against t for different values of k,145

demonstrates that the update peaks significantly higher than the desired 1 before slowly converging146

back to 1.147
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4 Adam with Relative Timesteps148

To fix the problems analysed in the previous section, we introduce Adam-Rel. At the start of each new149

supervised learning problem, Adam-Rel resets Adam’s t parameter to 0, rather than incrementing it150

from its previous value. This one-line change is illustrated for PPO in Algorithm 1.151

At the start of training, both momentum terms in Adam are 0. Therefore, at the first timestep, when152

the first gradient is encountered, the magnitude of the gradient is infinite relative to the current153

momentum estimate. As explained in Section 3, this induces a large update. However, dividing154

the momentum estimates by (1− β1
t) and (1− β2

t) fixes this issue by correcting for this sparsity.155

Therefore, by resetting t to 0, Adam handles changes in gradient magnitude resulting from the change156

of supervised learning problem.157

If we examine the same update as in the previous section adjusted by Adam-Rel, assuming that we158

reset Adam’s t just before the gradient scales to kg, we find it comes to159

lim
t′→∞

m̂i
−t′,t√
v̂i−t′,t

=

√
1− β2

t+1

1− β1
t+1

β1
t+1 + k(1− β1

t+1)√
β2

t+1 + k2(1− β2
t+1)

. (4)

160

As k → ∞, this tends to 1. This means that Adam-Rel ensures approximately unit update size in the161

case of a large increase in magnitude in the gradient, at the expense of a potentially smaller update at162

the point t is reset. Figure 1 shows the update size of Adam-Rel as t− t′ increases. The update size163

is smaller at the start, but never reaches significantly above 1.164

However, the above analysis does not show how Adam and Adam-Rel differ in practice, where large165

changes in gradient magnitude may not occur. Examining the bottom of Figure 1, we can see that for166

lower values of k, Adam-Rel rapidly decays the update size before increasing it. Functionally, this167

behaves like a learning rate schedule. Over a short horizon (e.g., 16 steps is common in PPO), this168

effect is similar to learning rate annealing, whilst over a longer horizon (e.g., approximately 1000169

steps in DQN) it is akin to learning rate warmup, both of which are popular techniques in optimising170

stationary objectives. Therefore, the benefits of Adam-Rel are twofold: first, it guards against large171

increases in gradient magnitude by capping the size of potential updates, and secondly, if such large172

gradient increases do not occur, it reduces to a form of learning rate annealing, which is commonly173

employed in optimising stationary objectives.174

5 Experiments175

5.1 Experimental setup176

To evaluate Adam-Rel, we explore its impact on DQN and PPO, two of the most popular algorithms177

in off-policy and on-policy RL respectively.178

To do so, we first train DQN [17, 18] agents with Adam-Rel on the Atari-10 benchmark for 40M179

frames, evaluating performance against agents trained with Adam and Adam-MR. We then extensively180

evaluate our method’s impact on PPO [4, 18, 19], training agents on Craftax-Classic-1B [12]—a181

JAX-based reimplementation of Crafter [20] where the agent is allocated 1 billion environment182

interactions—and the Atari-571 suite [13] for 40 million frames. In doing so, our benchmarks183

respectively evaluate the performance of Adam-Rel on exceedingly long training horizons and its184

robustness when applied to a diverse range of environments. We then analyse the differences between185

Adam-Rel and Adam’s updates. We compare 8 seeds on the Craftax-Classic environment for this186

purpose, recording the update norm, maximum update, and gradient norm of every update.187

5.2 Off-policy RL188

Figure 2 shows the performance of DQN agents trained with Adam-Rel against those trained with189

Adam-MR and Adam on the Atari-10 benchmark [14]. We tune the learning rate of each method,190

1We exclude 2 out of the 57 games, Montezuma’s Revenge and Venture, after observing that all algorithms
achieve a human-normalized score of 0.
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Figure 2: Performance of Adam-Rel, Adam, and Adam-MR for PPO and DQN on Atari-57 and
Atari-10 respectively. Atari-10 uses a subset of Atari tasks to estimate median performance across
the whole suite. Details can be found in [14]. Error bars are 95% stratified bootstrapped confidence
intervals across 10 seeds.

keeping all other hyperparameters fixed at values tuned for Adam in CleanRL [18]. Adam-Rel191

outperforms Adam, achieving 65.7% vs. 28.8% human-normalized performance. Furthermore, the192

stark performance difference between Adam-Rel and Adam-MR (23.5%) demonstrates the advantage193

of retaining momentum information across target changes (so long as appropriate corrections are194

applied), thereby contradicting the gradient contamination hypothesis discussed in Bengio et al. [11]195

and Asadi et al. [10].196

More surprisingly, Adam-MR performs substantially worse than Adam, contrasting with the findings197

of Asadi et al. [10]. We evaluate on a different set of Atari games and tune both Adam and Adam-MR198

separately, which may account for the differences. However, these results suggest that preventing any199

gradient information from crossing over target changes is an excessive correction and can even harm200

performance. We additionally evaluate on the set of games used by Asadi et al. [10], the results of201

which can be found in Appendix B. We find that Adam-Rel outperforms the Adam baseline in IQM.202

We also find that, although our implementation of Adam-MR again significantly under-performs203

relative to the Adam baseline, we approximately match the returns listed in their work.204

5.3 On-policy RL205

Craftax Figure 3 shows the performance of PPO agents trained on Craftax-1B over 8 seeds.206

Most strikingly, Adam-MR, which resets the optimizer completely when PPO samples a new batch,207

achieves dramatically poorer performance across all metrics. This deficit is unsurprising when208

compared to its performance on DQN, where the optimizer has many more updates between resets209

and so can achieve a superior momentum estimate, and demonstrates the impact of not retaining any210

momentum information after resets in on-policy RL.211

17.4 17.7 18.0 18.3
Adam

Adam-Rel
Adam-MR

Number of achievements

60 63 66 69

Score

2.5 5.0 7.5

Collect Diamonds

1 2 3

Eat Plant

Figure 3: PPO on Craftax-1B — comparison of metrics on Adam, Adam-Rel and momentum resets.
Bars show the 95% stratified bootstrap confidence interval, with mean marked, over 8 seeds [21].

Furthermore, Adam-Rel outperforms Adam on all metrics. Whilst the performance on the number of212

achievements is similar, we follow the evaluation procedure recommended in Hafner [20] and report213

score, calculated as the geometric mean of success rates for all achievements. This metric applies214

logarithmic scaling to the success rate of each achievement, thereby giving additional weight to those215

that are hardest to accomplish. We see that Adam-Rel clearly outperforms Adam in score, as well as216

on the two hardest achievements (collecting diamonds and eating a plant). These behaviours require217

a strong policy to discover so are learned late in training, suggesting that Adam-Rel improves the218

plasticity of PPO.219

Atari-57 Figure 2 shows the performance of PPO agents on Atari-57. As before, entirely resetting220

the optimizer significantly harms performance when compared to resetting only the count. Across221

all environments, Adam-Rel also improves over Adam, outperforming it in 33 out of the 55 games222

tested and IQM across games.223
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Figure 5: Adam and Adam-Rel compared to the theoretical model. To make this plot, we divided all
the updates in the PPO run into chunks, each of which was optimising a stationary objective. We
then averaged over all the chunks. The red dashed lines show the different epochs for each batch of
data. The assumption about the gradient under the model is shown in the grad norm plot. Note that
the update norm plot for Adam and Adam-Rel has separate y-axes. The shading represents standard
error.

To further analyse the impact of Adam-Rel over Atari-57, we plot the performance profile of224

human-normalized score (Figure 4). Whilst the performance of the two methods is similar over the225

bottom half of the profile, we see a major increase in performance in the top half. Namely, at the226

75th percentile of scores Adam-Rel achieves a human-normalized performance of 338% vs. 220%227

achieved by Adam. This demonstrates the ability of Adam-Rel to improve policy performance on228

tasks where Adam is successful but suboptimal, without sacrificing performance on harder tasks.229

5.4 Method Analysis230
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Figure 4: Performance Profile of Adam and Adam-
Rel on Atari-57. Error bars represent the stan-
dard error across 10 seeds. Green-shaded areas
represent Adam-Rel outperforming Adam and red-
shaded areas the opposite.

In this section we connect our theoretical expo-231

sition in Section 3 to our experimental results.232

Specifically, we first examine whether gradients233

increase in magnitude due to nonstationarity, to234

what extent predictions from our model match235

the resulting updates, and how Adam’s update236

differs from Adam-Rel’s in practice.237

To this end, we collect gradient (i.e., before pass-238

ing through the optimizer) and update (i.e., the239

final change applied to the network) information240

from PPO on Craftax-Classic. We follow the241

experimental setup in Section 5 but truncate the242

Craftax-Classic runs to 250M steps to reduce243

the data processing required. The results are244

shown in Figure 5.245

Comparing Theory and Practice In Figure 5,246

both Adam and Adam-Rel face a significant in-247

crease in gradient norm immediately after start-248

ing optimisation on a new objective resulting from a new batch of trajectories collected under an249

updated policy and value function. While this matches the assumptions we make in our work, the250

magnitude of the increase is much less than some of the values explored in Section 3.251

For Adam, this is approximately 29% and for Adam-Rel it is around 45%. The grad norm profiles252

look similar in each case, with the norm peaking early before decreasing below its initial average253

value. This decrease and the initial ramp both deviate from the step function we assume in our254

model. It is obvious that our theoretical model of gradients, which requires an increase in the gradient255

magnitude on each abrupt change in the objective, cannot hold throughout training in its entirety256

because this would require the gradient norm to increase without bound.257
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However, we find that despite this discrepancy, for Adam-Rel the update predicted by our model258

fairly closely matches the shape of the true update norm, i.e., a fast drop at the beginning followed by259

flattening (the scaling is not comparable between observed and predicted values).260

For Adam, our model explains the initial overshoot of the update norm but then fails to predict the261

rapid decrease, which results from the fast drop in the true gradient norm. Given the simplicity of our262

modeling assumptions, we find these results overall encouraging.263

On Spherical Cows Under the assumption of a step increase in gradients of an infinite relative264

magnitude Adam-Rel results in a flat update, while Adam would drastically overshoot. Clearly,265

this assumption does not hold in practice, as we have shown above. However, we believe that this266

mismatch between reality and assumption is encouraging, since our experimental results show that267

Adam-Rel is still effective in this regime. Our hypothesis is that there are two benefits to designing268

Adam-Rel under these assumptions. First of all, it avoids overshoots even under large gradient steps269

and secondly, when there are less drastic gradient steps it undershoots, which might have similar270

effects to a fast learning rate annealing. These kind of annealing schedules (over longer horizons) are271

popular when optimising stationary losses [22, 23].272

6 Related Work273

Optimization in Reinforcement Learning Plasticity loss [24–26] refers to the loss in ability of274

models to fit new objectives as they are trained. This is particularly relevant in nonstationary settings275

such as RL and continual learning, where the model is continuously fitting changing objectives. Many276

solutions have been proposed, including resetting network layers [27–31], policy distillation [24],277

LayerNorm [32, 33], regressing outputs to their initial values [25], resetting dead units [34] and adding278

output heads during training [35]. These solutions, in particular resetting layers during training [27,279

31], have contributed towards state-of-the-art performance on Atari 100k [29]. However, of these280

works, only Lyle et al. [32] investigate the relationship between the optimizer and nonstationarity,281

demonstrating that by reducing the momentum coefficient of the second-moment gradient estimate282

in Adam, the fraction of dead units no longer increases. However, these works focus on plasticity283

loss, which is a symptom of nonstationarity, and only analyse off-policy RL. In contrast, we address284

nonstationarity directly and evaluate both on-policy and off-policy RL.285

Meta-reinforcement learning [36–38] provides an alternative approach to designing optimizers for286

reinforcement learning. Rather than manually identifying problems and handcrafting solutions for287

RL optimization, this line of work seeks to automatically discover these solutions by meta-learning288

components of the optimization process. Often these methods parameterize the agent’s loss function289

with a neural network, allowing it to be optimized through meta-gradients [39–41] or zeroth-order290

methods [42, 19, 43]. Recently, Lan et al. [44] proposed meta-learning a black-box optimizer directly,291

demonstrating competitive performance with Adam on a range of RL tasks. However, these works292

are limited by the distribution of tasks they were trained on, and using handcrafted optimizers in RL293

is still far more popular.294

Adam Extensions Cyclical update schedules [45] have previously been applied in supervised295

learning as a mechanism for simplifying hyperparameter tuning and improving performance, and296

Loshchilov and Hutter [46] propose the use of warm learning rate restarts with cosine decay for297

improving the training of convolutional nets. Liu et al. [47] examine the combination of Adam and298

learning rate warmup, proposing RAdam to stabilise training. However, all of these methods focus299

on supervised learning and therefore assume stationarity.300

There has also been some investigation of the interaction between deep RL and momentum-based301

optimization. Henderson et al. [48] investigate the effects of different optimizer settings and recom-302

mend sensible parameters, but do not investigate resetting the optimizer. Bengio et al. [11] identify303

the problem of contamination of momentum estimates and propose a solution based on a Taylor304

expansion. Dohare et al. [49] investigate policy collapse in RL when training for longer than methods305

were tuned for and propose setting β1 = β2 to address this. By contrast, we investigate training for a306

standard number of steps and focus on improved overall empirical performance, rather than avoiding307

policy collapse. Asadi et al. [10], which is perhaps the most similar to our work, also aim to tackle308

contamination, but do so differently, by simply resetting the Adam momentum states to 0 whenever309

the target network changes in the value-based methods DQN and Rainbow. However, they do not310

8



consider resetting of Adam’s timestep parameter, and explain their improved results by suggesting311

that old, bad, momentum estimates contaminate the gradients when training on a new objective. By312

contrast, we demonstrate that resetting only the timestep suffices for better performance on a range313

of tasks and therefore that the contamination hypothesis does not explain the better performance of314

resetting the optimizer. We also demonstrate that retaining momentum estimates can be essential for315

performance, particularly in on-policy RL.316

Adam in RL To adapt Adam for use in RL, prior work has commonly applied a number of317

modifications compared to its use in supervised learning [8]. The first is to set the parameter ϵ to318

10−5, which is a higher value than the 10−8 typically used in supervised learning. Additionally319

many reinforcement learning algorithms use gradient clipping before passing the gradients to Adam.320

Typically gradient vectors are clipped by their L2 norm.321

A higher value of ϵ reduces the sensitivity of the optimizer to sudden large gradients. If an objective322

has been effectively optimized and hence the gradients are very small, then a sudden target change323

may lead to large gradients. v̂ typically updates much more slowly than m̂ and therefore this causes324

the update size to increase significantly, potentially causing performance collapse. However, this325

implementation detail is not mentioned in the PPO paper [4], and subsequent investigations omit it326

[6, 5]. Clipping the gradient by the norm also aims at preventing performance collapse. Andrychowicz327

et al. [6] find this to increase performance slightly when set to 0.5.328

7 Limitations and Future Work329

The clearest limitation of our work is that Adam-Rel is applicable only to optimization settings with330

abrupt nonstationarity. By contrast, a range of RL methods face smooth or continuous nonstationarity,331

such as when applying Polyak averaging [1] to smoothly update target networks after every optimiza-332

tion step. However, discrete nonstationarity is highly prevalent in contemporary RL algorithms (i.e.333

PPO [4], DQN [17], Rainbow [50], BBF [29]). While not all encompassing, Adam-Rel is therefore334

applicable to much of the current state of the art.335

There are also many promising avenues for future work. First, while we have focused on RL, it336

would be interesting to apply Adam-Rel to other domains that feature nonstationarity such as RLHF,337

training on synthetic data, or continual learning. Secondly, Adam-Rel is designed with the principle338

that large updates can harm learning, but it is not clear in general what properties of update sizes are339

desirable in nonstationary settings. Understanding this more clearly may help produce meaningful340

improvements in optimisation. Relatedly, it would be beneficial to better understand the nature of341

gradients in RL tasks, in particular how they change throughout training for different methods and342

what effect this has on performance. Finally, re-examining other aspects of the RL toolchain that are343

borrowed from supervised learning could produce further advancements by designing architectures,344

optimisers and methods specifically suited for problems in RL.345

8 Conclusion346

We presented a simple, theoretically-motivated method for handling nonstationarity via the Adam347

optimizer. By analysing the impact of large changes in gradient size, we demonstrated how directly348

applying Adam to nonstationary problems can lead to unstable update sizes, before demonstrating how349

timestep resetting corrects for this instability. Following this, we performed an extensive evaluation350

of Adam-Rel against Adam and Adam-MR in both on-policy and off-policy settings, demonstrating351

significant empirical gains. We then demonstrated that increases in gradient magnitude after abrupt352

objective changes occur in practice and compared the predictions of our simple theoretical model with353

the observed data in a complex environment. Adam-Rel can be implemented as a simple, single-line354

extension to any Adam-based algorithm with discrete nonstationarity (e.g. target network updates),355

leading to major improvements in performance across environments and algorithm classes. We hope356

that the ease of implementation and effectiveness of Adam-Rel will encourage researchers to use it as357

a de facto component of future RL algorithms, providing a step towards robust and performant RL.358
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A Proof of Theorem 1506

Starting from the definition of the momentum term in Adam’s update rule:507

mi
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From the solution to the sum of a geometric series:508
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Similarly for vit, it follows:509

vt = g2
[
β2

t+1(1− β2
t′) + k2(1− β2

t+1)
]
.

Substituting vit and mi
t into the Adam momentum updates with ϵ = 0 yields:510
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Taking the limit t′ → ∞ with β1, β2 ∈ [0, 1) yields our desired result:511

lim
t′→∞

m̂i
−t′,t√
v̂i−t′,t

=
β1

t+1 + k(1− β1
t+1)√
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.

B Results comparison with Asadi et al.512

Asadi et al. [10] find in their paper that their method, when applied to DQN, gives roughly comparable513

performance to their Adam baseline. However, in our paper we find that Adam-MR performs514

significantly worse than the Adam baseline, even when compared on the same games as in Figure 6.515

There Adam-Rel performs better than Adam on the inter-quartile mean, but worse on the median.516

However, given this is a selection of just 12 games of very different difficulties, the median is often517

likely in this case to reduce to a single game for most algorithms.518

To investigate this disparity, we compare our results for Adam-MR to theirs in Table 1. We estimated519

their scores in each game from the appropriate figures in their paper. Overall we see that our520
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Table 1: Comparison with the results from Asadi et al. [10]. The scores are estimated by taking the
performance at 40M frames from the figures in their paper. We compare to both K = 1000, which is
our default hyperparameter, and K = 8000, which is their default hyperparameter.

Environment Adam-MR (K=1000) [10] Adam-MR(K=8000) [10] Adam-MR (Ours) Adam-MR (K=1000) [10] Normalized Score Adam-MR (K=8000) [10] Normalized Score Adam-MR (Ours) Normalized Score

Amidar 350 300 270± 20 0.20 0.17 0.16± 0.01
Asterix 3500 4200 3600± 700 0.39 0.48 0.40± 0.09

BeamRider 3800 4300 4800± 500 0.21 0.24 0.27± 0.03
Breakout 160 200 300± 20 5.5 6.9 10.5± 0.7

CrazyClimber 0 85000 80000± 9000 -0.41 2.85 2.6± 0.3
DemonAttack 3300 3500 8400± 500 1.73 1.84 4.5± 0.3

Gopher 3500 4000 1500± 300 1.50 1.74 0.6± 0.1
Hero 1500 6000 1200± 600 0.015 0.17 0.005± 0.02

Kangaroo 10500 8250 6000± 900 3.5 2.75 2.0± 0.3
Phoenix 4250 4500 3800± 1000 0.54 0.58 0.5± 0.2
Seaquest 1300 6000 1800± 300 0.03 0.14 0.042± 0.006
Zaxxon 1000 6200 2200± 300 0.11 0.67 0.24± 0.04

Mean 1.11 1.54 1.81± 0.2
Inter-Quartile Mean2 0.49 0.92 0.66

Median 0.30 0.63 0.43

0.8 1.2 1.6 2.0
Adam

Adam-Rel
Adam-MR

IQM

0.5 1.0 1.5

Median

Human Normalized Score
Figure 6: Comparison of the inter-quartile mean and median of Adam-MR, Adam-Rel and Adam on
the Atari games evaluated on in Asadi et al. [10].

implementation, which uses K = 1000, performs significantly better than their implementation521

with K = 1000. It is also better in mean but worse in median and inter-quartile mean than their522

K = 8000 implementation. In short, our results broadly match theirs reported after a similar amount523

of training, but our Adam baseline performs significantly better than theirs. However, there are a524

number of differences in our evaluation. First we run for 10M steps (40M frames) whereas they run525

for 30M steps (120M frames). Secondly, they use the Dopamine [51] settings for Atari, whereas we526

use the more standard ones used by DQN [17]. We kept these settings throughout our paper to avoid527

significant hyperparameter tuning by evaluating in as standard settings as possible. We believe these528

results demonstrate the correctness of our implementation of their work and that our method still529

performs favourably.530

C Code Repositories531

For the Atari experiments (both DQN and PPO), we based our implementation on CleanRL [18]. This532

code is available here. For the Craftax experiments, we based our implementation on PureJaxRL [19].533

This code is available here.534

D Compute and Additional Experiments535

For our DQN experiments, we swept over learning rates for Adam-MR, Adam-Rel and Adam. For536

PPO experiments, we swept over learning rate, max gradient norm and GAE λ values, as we found537

these to differ from the PPO defaults. Experiments were performed on an internal cluster of NVIDIA538

V100 GPUs. Experiments were scheduled using slurm, with 10 CPU cores per GPU.539

The Atari PPO experiments required around 10000 GPU hours to complete, including hyperparameter540

tuning. The DQN experiments, because of the computational inefficiency of DQN, take much longer541

to run (approximately 2 days per experiment), and hence used a total of 14000 GPU hours, despite542

there being many fewer parallel runs. The Craftax-Classic experiments took around 300 GPU hours543

to complete.544

2This is the inter-quartile mean over environments as opposed to the more usual over environments and seeds.
This is because Asadi et al. [10] do not provide individual seed data.
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E Hyperparameters545

Table 2: Atari Adam PPO hyperparameters
Hyperparameter Value

Learning Rate 0.00025
Number of Epochs 4

Minibatches 4
γ 0.99

GAE λ 0.95
Normalise Advantages True

ϵ 0.1
Value Function Clipping True

Max Grad Norm 0.5
Number of Environments 8
Number of Rollout Steps 128

Table 3: Atari Adam-Rel and Adam-MR PPO hyperparameters
Hyperparameter Value

Learning Rate 0.002
Number of Epochs 4

Minibatches 4
γ 0.99

GAE λ 0.9
Normalise Advantages True

ϵ 0.1
Value Function Clipping True

Max Grad Norm 5.0
Number of Environments 8
Number of Rollout Steps 128

Table 4: Atari-10 DQN hyperparameters
Hyperparameter Value

Learning Rate 0.0001
Buffer Size 1× 106

γ 0.99
GAE λ 0.9

Target Network Update Steps 1000
Batch Size 32

Start ϵ 1
End ϵ 0.01

Exploration Fraction 0.1
Number of Steps without Training 80000

Train Frequency 4
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Table 5: Craftax Adam and Adam-MR PPO hyperparameters
Hyperparameter Value

Learning Rate 0.0003
Number of Epochs 4

Minibatches 4
γ 0.99

GAE λ 0.9
Normalise Advantages True

ϵ 0.2
Value Function Clipping True

Max Grad Norm 1
Number of Environments 512
Number of Rollout Steps 64

Table 6: Craftax Adam-Rel hyperparameters
Hyperparameter Value

Learning Rate 0.001
Number of Epochs 4

Minibatches 4
γ 0.99

GAE λ 0.7
Normalise Advantages True

ϵ 0.2
Value Function Clipping True

Max Grad Norm 5
Number of Environments 512
Number of Rollout Steps 64
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NeurIPS Paper Checklist546

1. Claims547

Question: Do the main claims made in the abstract and introduction accurately reflect the548

paper’s contributions and scope?549

Answer: [Yes]550

Justification: As claimed in the introduction, we provide an analysis of the Adam update rule551

under nonstationary gradients in Section 3, introduce and analyse Adam-Rel in Section 4,552

then evaluate Adam, Adam-Rel, and Adam-MR on Atari and Craftax in Section 5.553

Guidelines:554

• The answer NA means that the abstract and introduction do not include the claims555

made in the paper.556

• The abstract and/or introduction should clearly state the claims made, including the557

contributions made in the paper and important assumptions and limitations. A No or558

NA answer to this question will not be perceived well by the reviewers.559

• The claims made should match theoretical and experimental results, and reflect how560

much the results can be expected to generalize to other settings.561

• It is fine to include aspirational goals as motivation as long as it is clear that these goals562

are not attained by the paper.563

2. Limitations564

Question: Does the paper discuss the limitations of the work performed by the authors?565

Answer: [Yes]566

Justification: We discuss limitations, along with suggestions for future work, in Section 7.567

We also examine how our theoretical assumptions match practice in Section 5.4.568

Guidelines:569

• The answer NA means that the paper has no limitation while the answer No means that570

the paper has limitations, but those are not discussed in the paper.571

• The authors are encouraged to create a separate ”Limitations” section in their paper.572

• The paper should point out any strong assumptions and how robust the results are to573

violations of these assumptions (e.g., independence assumptions, noiseless settings,574

model well-specification, asymptotic approximations only holding locally). The authors575

should reflect on how these assumptions might be violated in practice and what the576

implications would be.577

• The authors should reflect on the scope of the claims made, e.g., if the approach was578

only tested on a few datasets or with a few runs. In general, empirical results often579

depend on implicit assumptions, which should be articulated.580

• The authors should reflect on the factors that influence the performance of the approach.581

For example, a facial recognition algorithm may perform poorly when image resolution582

is low or images are taken in low lighting. Or a speech-to-text system might not be583

used reliably to provide closed captions for online lectures because it fails to handle584

technical jargon.585

• The authors should discuss the computational efficiency of the proposed algorithms586

and how they scale with dataset size.587

• If applicable, the authors should discuss possible limitations of their approach to588

address problems of privacy and fairness.589

• While the authors might fear that complete honesty about limitations might be used by590

reviewers as grounds for rejection, a worse outcome might be that reviewers discover591

limitations that aren’t acknowledged in the paper. The authors should use their best592

judgment and recognize that individual actions in favor of transparency play an impor-593

tant role in developing norms that preserve the integrity of the community. Reviewers594

will be specifically instructed to not penalize honesty concerning limitations.595

3. Theory Assumptions and Proofs596

Question: For each theoretical result, does the paper provide the full set of assumptions and597

a complete (and correct) proof?598
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Answer: [Yes]599

Justification: We clearly state our assumptions about the gradient and optimiser in Equation 2600

and Theorem 3.1. We provide the proof in Appendix A.601

Guidelines:602

• The answer NA means that the paper does not include theoretical results.603

• All the theorems, formulas, and proofs in the paper should be numbered and cross-604

referenced.605

• All assumptions should be clearly stated or referenced in the statement of any theorems.606

• The proofs can either appear in the main paper or the supplemental material, but if607

they appear in the supplemental material, the authors are encouraged to provide a short608

proof sketch to provide intuition.609

• Inversely, any informal proof provided in the core of the paper should be complemented610

by formal proofs provided in appendix or supplemental material.611

• Theorems and Lemmas that the proof relies upon should be properly referenced.612

4. Experimental Result Reproducibility613

Question: Does the paper fully disclose all the information needed to reproduce the main ex-614

perimental results of the paper to the extent that it affects the main claims and/or conclusions615

of the paper (regardless of whether the code and data are provided or not)?616

Answer: [Yes]617

Justification: We detail how to reproduce the experiments in Section 5, as well as open-618

sourcing our code. We also describe the implementation of our method in Section 4.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• If the paper includes experiments, a No answer to this question will not be perceived622

well by the reviewers: Making the paper reproducible is important, regardless of623

whether the code and data are provided or not.624

• If the contribution is a dataset and/or model, the authors should describe the steps taken625

to make their results reproducible or verifiable.626

• Depending on the contribution, reproducibility can be accomplished in various ways.627

For example, if the contribution is a novel architecture, describing the architecture fully628

might suffice, or if the contribution is a specific model and empirical evaluation, it may629

be necessary to either make it possible for others to replicate the model with the same630

dataset, or provide access to the model. In general. releasing code and data is often631

one good way to accomplish this, but reproducibility can also be provided via detailed632

instructions for how to replicate the results, access to a hosted model (e.g., in the case633

of a large language model), releasing of a model checkpoint, or other means that are634

appropriate to the research performed.635

• While NeurIPS does not require releasing code, the conference does require all submis-636

sions to provide some reasonable avenue for reproducibility, which may depend on the637

nature of the contribution. For example638

(a) If the contribution is primarily a new algorithm, the paper should make it clear how639

to reproduce that algorithm.640

(b) If the contribution is primarily a new model architecture, the paper should describe641

the architecture clearly and fully.642

(c) If the contribution is a new model (e.g., a large language model), then there should643

either be a way to access this model for reproducing the results or a way to reproduce644

the model (e.g., with an open-source dataset or instructions for how to construct645

the dataset).646

(d) We recognize that reproducibility may be tricky in some cases, in which case647

authors are welcome to describe the particular way they provide for reproducibility.648

In the case of closed-source models, it may be that access to the model is limited in649

some way (e.g., to registered users), but it should be possible for other researchers650

to have some path to reproducing or verifying the results.651

5. Open access to data and code652
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Question: Does the paper provide open access to the data and code, with sufficient instruc-653

tions to faithfully reproduce the main experimental results, as described in supplemental654

material?655

Answer: [Yes]656

Justification: We provide anonymised links to our code in the Appendix, and only run on657

open-source environments, allowing for our experiments to be reproduced.658

Guidelines:659

• The answer NA means that paper does not include experiments requiring code.660

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/661

public/guides/CodeSubmissionPolicy) for more details.662

• While we encourage the release of code and data, we understand that this might not be663

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not664

including code, unless this is central to the contribution (e.g., for a new open-source665

benchmark).666

• The instructions should contain the exact command and environment needed to run to667

reproduce the results. See the NeurIPS code and data submission guidelines (https:668

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.669

• The authors should provide instructions on data access and preparation, including how670

to access the raw data, preprocessed data, intermediate data, and generated data, etc.671

• The authors should provide scripts to reproduce all experimental results for the new672

proposed method and baselines. If only a subset of experiments are reproducible, they673

should state which ones are omitted from the script and why.674

• At submission time, to preserve anonymity, the authors should release anonymized675

versions (if applicable).676

• Providing as much information as possible in supplemental material (appended to the677

paper) is recommended, but including URLs to data and code is permitted.678

6. Experimental Setting/Details679

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-680

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the681

results?682

Answer: [Yes]683

Justification: We provide details of our hyperparameter settings in Appendix E, as well as684

detailing our experimental setup in Section 5.685

Guidelines:686

• The answer NA means that the paper does not include experiments.687

• The experimental setting should be presented in the core of the paper to a level of detail688

that is necessary to appreciate the results and make sense of them.689

• The full details can be provided either with the code, in appendix, or as supplemental690

material.691

7. Experiment Statistical Significance692

Question: Does the paper report error bars suitably and correctly defined or other appropriate693

information about the statistical significance of the experiments?694

Answer: [Yes]695

Justification: In reporting our results, we follow the recommendations of Agarwal et al. [21].696

We provide details of the error bars in the figure captions for each plot.697

Guidelines:698

• The answer NA means that the paper does not include experiments.699

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-700

dence intervals, or statistical significance tests, at least for the experiments that support701

the main claims of the paper.702
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• The factors of variability that the error bars are capturing should be clearly stated (for703

example, train/test split, initialization, random drawing of some parameter, or overall704

run with given experimental conditions).705

• The method for calculating the error bars should be explained (closed form formula,706

call to a library function, bootstrap, etc.)707

• The assumptions made should be given (e.g., Normally distributed errors).708

• It should be clear whether the error bar is the standard deviation or the standard error709

of the mean.710

• It is OK to report 1-sigma error bars, but one should state it. The authors should711

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis712

of Normality of errors is not verified.713

• For asymmetric distributions, the authors should be careful not to show in tables or714

figures symmetric error bars that would yield results that are out of range (e.g. negative715

error rates).716

• If error bars are reported in tables or plots, The authors should explain in the text how717

they were calculated and reference the corresponding figures or tables in the text.718

8. Experiments Compute Resources719

Question: For each experiment, does the paper provide sufficient information on the com-720

puter resources (type of compute workers, memory, time of execution) needed to reproduce721

the experiments?722

Answer: [Yes]723

Justification: We provide details of the compute requirements in the Appendix. We also724

discuss there preliminary experiments that were not included.725

Guidelines:726

• The answer NA means that the paper does not include experiments.727

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,728

or cloud provider, including relevant memory and storage.729

• The paper should provide the amount of compute required for each of the individual730

experimental runs as well as estimate the total compute.731

• The paper should disclose whether the full research project required more compute732

than the experiments reported in the paper (e.g., preliminary or failed experiments that733

didn’t make it into the paper).734

9. Code Of Ethics735

Question: Does the research conducted in the paper conform, in every respect, with the736

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?737

Answer: [Yes]738

Justification: We have read and reviewed the ethics guidelines to ensure our work complies.739

Guidelines:740

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.741

• If the authors answer No, they should explain the special circumstances that require a742

deviation from the Code of Ethics.743

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-744

eration due to laws or regulations in their jurisdiction).745

10. Broader Impacts746

Question: Does the paper discuss both potential positive societal impacts and negative747

societal impacts of the work performed?748

Answer: [NA]749

Justification: This is foundational machine learning research and as such has no direct path750

to negative societal consequences separate from advancement in machine learning.751

Guidelines:752

• The answer NA means that there is no societal impact of the work performed.753
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• If the authors answer NA or No, they should explain why their work has no societal754

impact or why the paper does not address societal impact.755

• Examples of negative societal impacts include potential malicious or unintended uses756

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations757

(e.g., deployment of technologies that could make decisions that unfairly impact specific758

groups), privacy considerations, and security considerations.759

• The conference expects that many papers will be foundational research and not tied760

to particular applications, let alone deployments. However, if there is a direct path to761

any negative applications, the authors should point it out. For example, it is legitimate762

to point out that an improvement in the quality of generative models could be used to763

generate deepfakes for disinformation. On the other hand, it is not needed to point out764

that a generic algorithm for optimizing neural networks could enable people to train765

models that generate Deepfakes faster.766

• The authors should consider possible harms that could arise when the technology is767

being used as intended and functioning correctly, harms that could arise when the768

technology is being used as intended but gives incorrect results, and harms following769

from (intentional or unintentional) misuse of the technology.770

• If there are negative societal impacts, the authors could also discuss possible mitigation771

strategies (e.g., gated release of models, providing defenses in addition to attacks,772

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from773

feedback over time, improving the efficiency and accessibility of ML).774

11. Safeguards775

Question: Does the paper describe safeguards that have been put in place for responsible776

release of data or models that have a high risk for misuse (e.g., pretrained language models,777

image generators, or scraped datasets)?778

Answer: [NA]779

Justification: The paper contains no such risky models or data.780

Guidelines:781

• The answer NA means that the paper poses no such risks.782

• Released models that have a high risk for misuse or dual-use should be released with783

necessary safeguards to allow for controlled use of the model, for example by requiring784

that users adhere to usage guidelines or restrictions to access the model or implementing785

safety filters.786

• Datasets that have been scraped from the Internet could pose safety risks. The authors787

should describe how they avoided releasing unsafe images.788

• We recognize that providing effective safeguards is challenging, and many papers do789

not require this, but we encourage authors to take this into account and make a best790

faith effort.791

12. Licenses for existing assets792

Question: Are the creators or original owners of assets (e.g., code, data, models), used in793

the paper, properly credited and are the license and terms of use explicitly mentioned and794

properly respected?795

Answer: [Yes]796

Justification: We cite CleanRL, which our PPO and DQN implementations are based on,797

and only rely on open-source freely available libraries.798

Guidelines:799

• The answer NA means that the paper does not use existing assets.800

• The authors should cite the original paper that produced the code package or dataset.801

• The authors should state which version of the asset is used and, if possible, include a802

URL.803

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.804

• For scraped data from a particular source (e.g., website), the copyright and terms of805

service of that source should be provided.806
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• If assets are released, the license, copyright information, and terms of use in the807

package should be provided. For popular datasets, paperswithcode.com/datasets808

has curated licenses for some datasets. Their licensing guide can help determine the809

license of a dataset.810

• For existing datasets that are re-packaged, both the original license and the license of811

the derived asset (if it has changed) should be provided.812

• If this information is not available online, the authors are encouraged to reach out to813

the asset’s creators.814

13. New Assets815

Question: Are new assets introduced in the paper well documented and is the documentation816

provided alongside the assets?817

Answer: [Yes]818

Justification: We provide anonymised links to the released code in the Appendix and819

document how to run experiments.820

Guidelines:821

• The answer NA means that the paper does not release new assets.822

• Researchers should communicate the details of the dataset/code/model as part of their823

submissions via structured templates. This includes details about training, license,824

limitations, etc.825

• The paper should discuss whether and how consent was obtained from people whose826

asset is used.827

• At submission time, remember to anonymize your assets (if applicable). You can either828

create an anonymized URL or include an anonymized zip file.829

14. Crowdsourcing and Research with Human Subjects830

Question: For crowdsourcing experiments and research with human subjects, does the paper831

include the full text of instructions given to participants and screenshots, if applicable, as832

well as details about compensation (if any)?833

Answer: [NA]834

Justification: The paper contains no crowdsourcing or research with human subjects.835

Guidelines:836

• The answer NA means that the paper does not involve crowdsourcing nor research with837

human subjects.838

• Including this information in the supplemental material is fine, but if the main contribu-839

tion of the paper involves human subjects, then as much detail as possible should be840

included in the main paper.841

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,842

or other labor should be paid at least the minimum wage in the country of the data843

collector.844

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human845

Subjects846

Question: Does the paper describe potential risks incurred by study participants, whether847

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)848

approvals (or an equivalent approval/review based on the requirements of your country or849

institution) were obtained?850

Answer: [NA]851

Justification: The paper does not involve crowdsourcing or research with human subjects.852

Guidelines:853

• The answer NA means that the paper does not involve crowdsourcing nor research with854

human subjects.855

• Depending on the country in which research is conducted, IRB approval (or equivalent)856

may be required for any human subjects research. If you obtained IRB approval, you857

should clearly state this in the paper.858
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• We recognize that the procedures for this may vary significantly between institutions859

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the860

guidelines for their institution.861

• For initial submissions, do not include any information that would break anonymity (if862

applicable), such as the institution conducting the review.863
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