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Abstract

Real-time video generation, interactive world models, and on-device image synthe-
sis are almost a reality. Diffusion models have achieved sufficient sample quality
for these tasks, moving the bottleneck to the throughput of the models themselves.
Typically, throughput constraints are addressed with model distillation or timestep
subsampling, compromising the quality of the original model. Luckily, images are
a sparse modality, where few patches contain a majority of global information. De-
spite this, predominant architectures such as diffusion transformers (DiTs) process
patches uniformly, leading to suboptimal compute allocation and failing to exploit
this sparsity. As a solution, we introduce SparseDiT, a simple DiT extension that
dynamically subsamples image tokens within both self-attention and MLP opera-
tions. Specifically, SparseDiT employs a simple routing mechanism with constant
per-sample token capacity for self-attention blocks and dynamic capacity for MLP
blocks, enabling efficient parallel inference with dynamic compute allocation across
tokens, images, and timesteps. Our experiments in image generation and video
world modeling demonstrate that SparseDiT significantly reduces computational
costs—processing as few as 12.5% of the tokens on video tasks—while simultane-
ously improving generation performance over unrouted baselines. Furthermore, we
analyze learned compute allocation of SparseDiT models, demonstrating intuitive
allocation to meaningful image patches and high-motion video patches.

1 Introduction

Recent advancements in real-time video generation, interactive world models, and on-device image
synthesis promise to unlock an array of new applications for generative models and yield a new
frontier of synthetic data. Diffusion models are at the forefront of this progress but their application
has been limited by their iterative generation procedure, which requires multiple model evaluations to
generate samples. The resulting latency is often reduced by subsampling diffusion timesteps to reduce
model evaluations or distilling models into smaller variants to reduce the cost of each evaluation.
However, both of these approaches sacrifice image quality in the name of speed. Improving the
practical applicability of diffusion methods requires finding ways to reduce their latency while
maintaining high image quality.

Fortunately, images and videos are a sparse modality, with relatively few patches containing a
disproportionate amount of global information. For example, in many images the background is
much simpler than the foreground and is therefore easier to denoise. This effect is magnified in
videos, where frame patches containing static objects can be simply copied from the previous frame.
Ideally, diffusion whould use less computation on simpler patches, reducing overall latency by only
applying denoising when required. However, predominant diffusion architectures such as diffusion
transformers (Peebles and Xie, [2023| DiT) fail to exploit this property, instead applying all operations
to every token and thereby allocating compute uniformly over images and videos.
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(b) Learned compute allocation.

Figure 1: In (a), a representative sample from SparseDiT-L/2 with 25% capacity, picked at random
(seed 0). In (b), SparseDiT learns to allocate compute over samples, tokens (patches), and noise
levels. Patch brightness corresponds to the proportion of blocks applied to the token at the given
timestep. Compute allocation for register tokens is depicted below each sample, showing significant
allocation by the self-attention operation at every timestep.

To solve this problem, we introduce SparseDiT, a simple extension to the DiT architecture that enables
dynamic allocation of compute across images, patches, and noise levels. SparseDiT subsamples image
tokens within the self-attention and MLP layers using a minimal routing mechanism (Section 3. IJ)
and requires no auxiliary loss or post-processing. As shown in[Figure 1] this enables SparseDiT to
allocate more compute to the complex and meaningful elements of images, such as the red panda’s
ears and nose, with fewer FLOPs applied to the background. Furthermore, the model can allocate
more computation at lower noise levels, when there is more signal with which to denoise the image.
SparseDiT routes tokens with a dynamic per-sample token capacity for MLP blocks (Section 3.2)),
as well as a fixed per-sample token capacity for self-attention block (Section 3.3)), thereby enabling
efficient training and inference on parallel GPU hardware, without “ragged batches”.

We evaluate SparseDiT on Imagenet (Deng et al.,|2009)) and the 1X World Modeling Challenge (1X}
2025)), demonstrating its potential for image and video generation. On Imagenet (Section 4.1,
SparseDiT improves performance across compute-normalized evaluation metrics against vanilla DiT
models, considering a range of SparseDiT model capacities and diffusion sampling lengths. Using a
SparseDiT model with only a 12.5% routing capacity, we similarly demonstrate improvements in
video modeling PSNR on the 1X Challenge (Section 4.2)), while requiring 33% fewer FLOPs than
the DiT baseline. Furthermore, we analyze the routing behavior of SparseDiT on these tasks and
demonstrate strong correlations between compute allocation and intuitive visual features. Namely,
we observe increased compute allocation for image and patch classes with high token loss, as well as
to spatio-temporal video patches with high optical flow.

In summary, our work presents and demonstrates an effective approach for efficient compute allocation
in diffusion models, providing an intuitive analysis of the model’s behavior. SparseDiT improves
generation quality and reduces FLOPs by dynamically allocating compute across samples,
patches, and noise levels, requiring only a minimal routing operation.



2 Background

2.1 Diffusion Models

Diffusion models (Sohl-Dickstein et al., [2015} |[Ho et al., [2020; [Dhariwal and Nichol, [2021) gen-
erate images by iteratively removing noise from samples drawn from a known noisy distribution.
Specifically, they consist of two complementary Markov processes: a forward noising process and a
reverse denoising process. In the forward process, an initial clean image x is progressively corrupted
into a purely noisy image x across a discrete sequence of timesteps ¢t = 1,...,7T, following the
Gaussian conditional distribution g(z; | z;—1) = N(x¢; /1 — Bexi—1, Bel), where 8, € (0,1)
defines the noise schedule at timestep t. Equivalently, this forward process can be expressed as
xr = /A xo + 1 — aze, with e ~ N(0,1) and & = [['_,(1 — B:). The reverse process, pa-
rameterized by a neural network, gradually reconstructs the original clean image from x7 to xg by
approximating the conditional distributions pg(z;_1 | #¢) = N (x4_1; pe (2, 1), XLe(xs, t)). Model
training involves minimizing the discrepancy between the predicted and actual noise at each timestep,
enabling accurate modeling of the underlying data distribution.

2.2 Vision Transformers and Attention Sinks

Following their success in language modeling, transformers (Vaswani et al., [2017) have been suc-
cessfully applied to vision tasks. Vision transformer (Dosovitskiy et al., |2020, ViT) achieves this
by constructing a flattened token sequence from pixel patches. Similar to transformers, ViT models
consist of alternating (multi-head) self-attention (Bahdanau et al., 2014) and multi-layer perceptron
(MLP) blocks, with intermediate layer normalization (Ba et al.| 2016)). In these models, self-attention
distributes information across the sample, in this case passing information between image patches,
while the MLP processes tokens independently. Diffusion transformers (Peebles and Xie, 2023} DiT)
adapt ViT models for image diffusion with adaptive layer normalization (adalLN), which conditions
the normalization operation on the diffusion timestep and image class.

Outside of diffusion, various extensions to ViT have been proposed. |Darcet et al.| (2023)) analyse
the attention map of ViT models, finding the emergence of low-information image patches with
anomalously high attention weights. These tokens, akin to attention sinks (Xiao et al., [2023), are
used to pool global information from across the image, but require this information to be undone
from the token. Therefore, the authors propose register tokens with learned embedding values that
are appended to the image sequence and discarded at the end of the forward pass. |Darcet et al.|(2023)
demonstrate that these tokens receive high attention weights and remove the attention sinks from the
image, improving performance and the alignment of the saliency map with semantic features.

Finally, mixture-of-experts (Shazeer et all 2017; [Fedus et al., 2022, MoE) approaches improve
transformer scaling by dividing transformer MLP blocks into multiple “expert” MLPs, with each
token typically applied to only a single expert. Expert selection is determined by a routing module,
in which a small MDP computes a scalar score for each token-expert pair before the highest expert
scores for each token, or the highest token scores for each expert (Zhou et al.| 2022), are selected.

3 Sparse Diffusion Transformers with Token Routing

Visual data is typically sparse so some image patches are significantly more challenging to denoise
than others. Despite this, DiT models process all tokens uniformly, applying each self-attention and
MLP operation to all tokens. To effectively process visual data with minimal operations, we therefore
hypothesize that tokens corresponding to challenging denoising objectives should be applied to more
blocks, thereby dynamically allocating compute over tokens.

To achieve this, we propose SparseDiT, a simple, routing-based extension to DiT, requiring no
auxiliary losses. At the start of each self-attention and MLP block, SparseDiT uses a lightweight
router (Section 3.1) to select a subset of tokens to be processed by that block. In self-attention blocks
seDiT selects a fixed capacity of K tokens from each sample, and applies the
self-attention block to those tokens, thereby enabling higher levels of compute to be allocated to
important tokens. SparseDiT similarly selects the most important tokens to be routed to MLP blocks
(Section 3.2); however, this is performed over the entire batch, allowing compute to be dynamically
allocated across samples and noise levels, as well as tokens.



3.1 A Minimal Routing Mechanism for Diffusion Transformer Sparsity

At the core of our method is a simple routing mechanism, with similar design to an MoE routing
module. Our router blocks consist of a tiny, two-layer MLP R that is applied independently to each
token ¢; to compute a scalar score R(t;). During training, Gumbel noise g1, g2 ~ Gumbel(0, 1) is
applied to all router scores to encourage exploration in top-K selection (Jang et al.l 2016), as well as
inducing a bimodal score distribution with a threshold approaching 0.5 (Figure 3). For stability, we
finally apply a sigmoid operation o (-) with a fixed temperature (which we set to 5.0) to all scores,
giving the token score

o(=B- (Re(ts) + 91 — g2))s during training,
e = { (D

(=B Re(t:)), during evaluation,

where £ is the inverse temperature. Following |Raposo et al.|(2024), we multiply the output of the
block for each token by its routing score r;, thereby ensuring that the router weights are updated by
gradient-based optimizers. Intuitively, this also weights the magnitude of the update from the block
by the “importance” of the token, ensuring that routed tokens with low scores have a reduced update
from the block.

3.2 Dynamic-Capacity Routing for MLP Blocks

ing of tokens for MLP blocks, in which the ® 0
number of routed tokens can vary across sam-
ples and noise levels. At training time, we
compute routing scores for each token and per-
form a top- K operation over the entire training
batch, with an overall capacity of B - K for a
batch of size B. This ensures that, at training
time, K tokens are routed on average per sam-
ple, but allows a variable number of tokens to
be processed from each sample.

SparseDiT performs dynamic-capacity rout- _ N\ ——
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At test time, we aim to maintain dynamic allo-
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can present issues at this stage. If samples (0000] (0000)]
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tokens induces a constant capacity for each
sample and diffusion timestep, losing the dy-
namic allocation. Similarly, if all samples in a
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the same class, a top-K operation induces a

Figure 2: SparseDiT self-attention and MLP blocks—
samples are processed independently in attention
blocks to ensure fixed-size self-attention kernels,
whilst the top-K tokens are computed across the

constant capacity at that level and class, sacri- entire batch (training) or with a static threshold (eval-

ficing dynamic allocation. Instead, we require uation) for MLP blocks.

a proxy for the global top- K operation applied during training, when batches are uniformly sampled
over samples and timesteps. This could be achieved by estimating the threshold for a token’s router
score to be in the top-K scores across all samples and timesteps, for instance by tracking this threshold
over training. However, storing a separate threshold for each block introduces model complexity, as
the thresholds most be estimated at the end of training and stored with the model.

As a simple and effective proxy, we propose generating samples using a constant MLP score threshold
of 0.5. While this is an approximation of the true global threshold, we find that trained models
naturally learn a threshold close to 0.5 when scores are computed across all samples and timesteps,
regardless of their capacity (Figure 3| [Appendix A)). This is intuitive due to the Gumbel-sigmoid
operation in our routing blocks, which introduces noise in the token scores during training. In order
for a model to optimally select the most important tokens under this stochasticity, it is encouraged to
produce a bimodal score distribution—with scores close to 1.0 for the top-K tokens and close to 0.0
for all other tokens—thereby minimizing the chance of suboptimal tokens being routed by the model
due to Gumbel noise.
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Figure 3: Router scores for various SparseDiT-L/2 router capacities—we observe that a static
threshold of 0.5 closely approximates the target capacity, despite the model being trained only with
top-K sampling and no auxiliary loss. Router scores for each block can be found in[Appendix A}

3.3 Fixed-Capacity Routing for Self-Attention Blocks

Routing in self-attention blocks introduces additional computational constraints to MLP routing,
requiring a distinct approach. To perform efficient batch generation on parallel GPU hardware, it
is critical that the shapes of tensors remain constant for all operations in the batch. For dynamic
application of MLP blocks this is not an issue, as tokens are processed independently by the MLP,
allowing a variable number of tokens to be allocated from each sample. However, in the self-attention
operation, all tokens from the same sample attend to each other, yielding an attention matrix with
width equal to the number of per-sample tokens in the self-attention. In order for this attention matrix
to have constant dimensionality across all samples, we therefore require attention blocks to have
constant capacity for all samples. We implement this with a simple top- K operation over each sample
at both training and test time, ensuring a fixed shape. While this prevents dynamic compute allocation
across samples and timesteps, it enables allocation across tokens within a sample and avoids the issue
of “ragged batches” with varying sequence lengths per sample.

4 Experiments

In this section, we evaluate the performance of SparseDiT on image generation (Section 4.1)) and
video world modeling tasks (Section 4.2)). In each of these, we demonstrate improved sample quality
against DiT models at the same number of model FLOPs, in addition to strong correlations between
token routing proportion and semantic features, such as image and patch class, as well as motion
in videos. These results demonstrate the potential of SparseDiT to achieve competitive generation
performance with significantly reduced computation and provide insight into the behavior of learned
compute allocation.

4.1 Image Generation

Experimental Setup We perform experiments on ImageNet (Deng et al.,2009), using the Face-
blurred ILSVRC 2012-2017 variant (Yang et al., 2022) at 256 x 256 resolution. We train all models
from scratch for 1M steps (requiring approximately 6 days on 4 L40S GPUs) using the DiT-L/2
configuration and all hyperparameters from [Peebles and Xie| (2023) without further tuning. This
includes using the same pre-trained variational autoencoder (Kingma et al., 2013, VAE) from Stable
Diffusion (Rombach et al.| 2022), with an 8 x downsample factor, giving a latent embedding with
dimensions 32 x 32 x 4. To make SparseDiT comparable in FLOPs with DiT, we construct SparseDiT
by replacing alternate DiT blocks with two SparseDiT blocks, approximately matching DiT FLOPs
for a 50% capacity model with the same configuration. Finally, due to the effectiveness of register
tokens in previous ViT models, we append every latent image with 8 register tokens, giving a total
embedding length of 264.
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Figure 4: ImageNet performance—we report FID-10K, sFID-10K, and IS for samples generated with
varying numbers of diffusion timesteps. Precision and recall evaluation can be found in

Evaluation Metrics We evaluate the performance of image generation using standard evaluation
metrics of generative models: Fréchet Inception Distance (Heusel et al.| 2017, FID), spatial FID (Nash
et al. sFID), Inception Score (Salimans et all 2016| IS), and Precision/Recall (Kynkaénniemi
et al.,[2019). Due to computational constraints, we report FID-10K and sFID-10K rather than the
more extensive -50K variants, allowing us to report statistics at multiple diffusion lengths for each
model. Furthermore, to analyze compute allocation in SparseDiT models we use the image classes
from Imagenet and estimate patch classes using the semantic segmentation map from a pre-trained

SegFormer model 2021).

Results [Figure 4|and [Appendix B|show the FLOPs-normalized performance of 50%, 25%, and
12.5% SparseDiT models, as well as a vanilla DiT model. At the same number of FLOPs, we observe
that 50% and 25% capacity SparseDiT models outperform DiT at all numbers of FLOPs in FID, sFID,
IS, and Precision (with the exception of sFID at the highest number of FLOPs). Furthermore, the
12.5% capacity model is competitive with DiT in these metrics, particularly at lower FLOPs levels
when SparseDiT is able to perform significantly more diffusion timesteps than DiT, which using the
same number of FLOPs for generation. On metrics other than sFID, we find that the 12.5% capacity
model underperforms higher capacity SparseDiT models. However, a constant capacity is used for
both MLP and self-attention blocks, which have different routing behavior (Figure T), and therefore
distinct constraints on capacity. While not explored further here, the investigation of these constraints
provides a promising avenue for future work.
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Figure 5: High-loss patch and image classes are allocated more compute—mean routing percentage
for patch and image classes is shown (right), as well as generated samples from the image classes
with highest and lowest compute allocations (left). Only the MLP routing percentage is presented for
image classes since the self-attention capacity is constant per sample. Results are shown for a 25%
capacity model—results for both 12.5% and 50% capacity models can be found in
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Figure 6: SparseDiT compute allocation increases at lower noise levels—we present the dynamic
MLP router capacity across diffusion timesteps, as well as differences in capacity and loss.

Compute Allocation over Sample and Patches To understand how SparseDiT allocates compute
between samples and image patches, we analyze the relationship between routing percentage and
model loss on various sample and patch classes (Figure 3] [Appendix C)). Namely, we compute the
mean loss and token routing proportion of SparseDiT models on all image and patch classes across
uniformly sampled diffusion timesteps. Since self-attention capacity is constant on all samples, we
show only the MLP routing proportion for image classes. We observe a strong positive correlation
between image and patch loss with the proportion of routed tokens for that class, suggesting that
SparseDiT correctly allocates more compute to harder classes. Furthermore, we observe that the
“shower” patch class is an outlier for every model capacity, achieving the highest loss with relatively
little compute allocation. We hypothesize that this is due to the highly entropic nature of such patches,
meaning that increased compute provides limited reduction in loss.

Compute Allocation over Noise Levels In we present the compute allocation of samples
over noise levels (diffusion timesteps), as well as the difference in diffusion loss of SparseDiT
models with different capacity levels. Again, we show only the MLP routing proportion since the
self-attention capacity is constant across samples. We observe increased compute allocation at lower
noise levels (smaller timesteps) for all models, as well as a greater difference in allocated capacity
between models, validating the qualitative example in This is understandable since the
samples with less noise preserve more of the original signal, therefore allowing lower loss to be
achieved with high compute allocation. Furthermore, we observe that the difference in loss between
SparseDiT models is roughly proportional to the difference in compute allocation between them,
suggesting that high-capacity models effectively leverage their capacity at low noise levels to decrease
loss. At very low levels of noise, the differences in loss and allocated capacity sharply decrease. We
hypothesize that this is due to the high level of precision required to estimate noise, which fails to
leverage additional allocated compute.

4.2 Video World Modeling

Experimental Setup We use the raw video dataset from the 1X World Modeling Challenge (1X
2025)), containing approximately 100 hours of humanoid robot POV video at 30 frames-per-second
and 512 x 512 resolution, as well as continuous controller actions for the robot at every frame. To
embed these videos for latent diffusion, we use the pre-trained Cosmos Tokenizer (NVIDIA/ 2025),
selecting the continuous variant with an 8 x spatial and temporal downsample factor. This embeds
8 contiguous video frames with dimension 8 x 512 x 512 x 3 into a latent frame with dimension
1 x 64 x 64 x 16. During training, we condition models on two latent context frames, equivalent
to 16 image frames, as well as the next 8 robot actions (corresponding to 1 latent frame). We train
models to denoise the next latent frame conditioned on this context, and autoregressively sample
latent frames during evaluation.

In order to support efficient training on video data, we also introduce spatio-temporal (ST) variants
of DiT and SparseDiT, ST-DiT and ST-SparseDiT. These separate the self-attention operation into
separate spatial and temporal attention operations, in which tokens attend to other tokens in the same
frame, or other tokens in the same position in previous frames respectively. We train ST-DiT and
ST-SparseDiT using the DiT-L/2 configuration for 200K steps, requiring 4 days on 8§ H100 GPUs.



Results Following the challenge guidelines, we evaluate PSNR of the 60" generated video frame
(2.0 seconds in the future) against the true frame on the validation subset. To increase clarity and
evaluate the model closer to its training setup—that is, predicting the next 8 frames—we also evaluate
generated frames at 15 and 30 frame intervals (0.5 and 1.0 seconds). Comparing DiT to SparseDiT
with a capacity of 12.5%, we observe improvements in PSNR at 1.0s and 2.0s intervals, with the DiT
model using 50% more FLOPs than SparseDiT (Table T)). This improvement in performance is likely
attributed to the increase in parameters in the SparseDiT model. However, this is rarely a bottleneck
for real-world deployment, with inference and training cost being much more significant factors.

Table 1: ST-SparseDiT has more parameters, fewer FLOPS, and higher performance on the 1X World
Modeling dataset—performance of a 12.5% capacity SparseDiT model is shown.

PSNR
Model Parameters GFLOPs +05s +1.0s  +2.0s
ST-DiT 652M 1238.0 19.7 18.1 17.2
ST-SparseDiT 943M 823.5 19.7 18.6 174

Compute Allocation over Optical Flow In video generation, models are conditioned on previous
frames, making it trivial to denoise future tokens corresponding to static objects (which could be
achieved by a simple copy operation). We therefore hypothesize that dynamic objects (those with
high optical flow) should therefore benefit from increased compute allocation in SparseDiT models.
To evaluate this, we visualize the mean routing percentage and the absolute pixel difference against
the previous frame, as a simple approximation of optical flow (Figure 7). We observe a strong positive
correlation between frame difference and routed tokens, validating our hypothesis and confirming
that SparseDiT uses more FLOPs to generate frames with many dynamic objects.
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Figure 7: Compute allocation is strongly correlated with video motion—we show mean routing
percentage for binned values of patch difference (clipped at the 99" percentile). Patch difference is
computed as the magnitude of the difference between generated patches in adjacent frames and the
model is trained on the 1X World Modeling Dataset, with a capacity of 12.5%.

5 Related Work

Transformers have become the predominant architecture for flow-based generative modeling, in
both image generation with models such as DiT (Peebles and Xie, 2023)), DALL-E 3 (Goh et al.,
2023), and Latte (Ma et al., 2024)), as well as video generation in GAIA-2 (Russell et al.| [2025)),
Genie 2 (Parker-Holder et al.| 2024), Mochi (GenmoAl, [2024)), Sora (Brooks et al., 2024}, and
MovieGen (Polyak et al.,|2024). This paradigm naturally invites adaptive compute allocation, since
denoising difficulty varies across noise levels and spatio-temporal regions. Furthermore, many of
the downstream applications of these models, such as large-scale image generation and real-time
video generation, have strict constraints on latency that require fast inference. Despite this, adaptive
computation techniques have not yet been adopted in these state-of-the-art models.



However, research interest in this area has recently increased. |Wang et al.|(2024)) learn sparsity masks
for pre-trained diffusion models without content-dependent selection, while Xi et al.|(2025)) investigate
sparsity in spatial-temporal attention maps, applying an online profiling strategy to generate sparse
attention patterns for video diffusion transformers. [Zhao et al. (2025) introduce an approach for
dynamic width reduction conditioned on diffusion timesteps, as well as patch sparsity in their MLP
block, using an auxiliary loss to balance overall FLOPs. By contrast, our method dynamically selects
tokens within both attention and MLP blocks, preserving tensor shapes for efficient batch inference
with per-sample flexibility in the MLP block, and without any auxiliary loss. Furthermore, our
work uncovers correlations between routing proportion and semantic attributes—such as optical flow
magnitude and semantic classes—offering interpretability alongside performance gains.

Outside of diffusion modeling, adaptive computation has become increasingly prevalent in transformer
models, in order to allocate resources efficiently based on input complexity. Xin et al.| (2020) propose
a language model architecture with adaptive depth via an early exiting mechanism. Inspiring this
work, mixture-of-depths (Raposo et al., [2024) uses a routing mechanism to limit the capacity of
transformer layers in autoregressive language models. While this method shows improvements
in the FLOPs-normalized performance frontier of such models, we find diffusion to be an even
more suitable paradigm for this architecture, as the models avoid causal structure interfering with
the top-K operation. Mixture-of-experts mechanisms (Shazeer et al., 2017; |[Fedus et al., 2022,
MoE) are indirectly related to dynamic compute allocation and have also been applied to diffusion
modeling (Shi et al., 2025ﬂ focusing on specialization of MLP heads rather than selective application.
Finally, a range of methods orthogonal to model sparsity have been applied to accelerate the sampling
process in diffusion. These commonly reduce the sampling timesteps, via more efficient integration
schemes (Song et al.,[2021} [Lu et al.,|2022)) or progressive distillation (Salimans and Ho, [2022]).

6 Conclusion

Summary SparseDiT represents a significant advancement in efficient generative modeling, effec-
tively addressing a computational inefficiency inherent in existing diffusion models by dynamically
allocating compute across tokens, samples, and noise levels. By employing a minimal yet powerful
routing mechanism, SparseDiT demonstrates considerable performance improvements at the same
level of compute, on both image and video generation tasks. Our evaluation also provides an intu-
itive understanding of the learned routing mechanism, highlighting SparseDiT’s capability to align
computational effort with semantic importance and temporal dynamics. Our work thus provides a
step towards unlocking generative modeling in latency and hardware-constrained settings and offers
insights into the distribution of computational resources within diffusion models.

Limitations and Future Work While our work provides an extensive evaluation, it is ultimately
limited by our computational resources, providing the opportunity for further evaluation with alternate
datasets, architectures, and generative algorithms. Namely, image generation datasets such as
ArtBench (Liao et al., [2022) and Food (Bossard et al.,[2014), as well as video generation datasets
such as Taichi-HD (Siarohin et al.,2019) and Minecraft VPT (Baker et al., 2022}, would strengthen
confidence in the performance of SparseDiT. Regarding architectures, our routing mechanism could
be similarly applied to other flow-based generative architectures such as Latte (Ma et al., [2024),
as well as alternative algorithms such as flow matching (Lipman et al., 2022). In contrast to our
evaluation, which trains SparseDiT models from scratch, it would be fruitful to investigate the
finetuning of pre-trained, open-source generative models—such as DiT-XL (Peebles and Xie, [2023)
and Mochi (GenmoAl, 2024)—with the addition of the SparseDiT routing mechanism. This would
enable post-hoc addition of sparsity to large-scale models, with a limited computational budget.

Finally, SparseDiT introduces a capacity hyperparameter for the MLP and self-attention blocks,
providing a range of promising avenues for further investigation. While our method avoids auxiliary
losses, the addition of such a loss could enable automatic tuning of this capacity, with a regularization
penalty against high compute budgets. Furthermore, we use a constant capacity for both MLP and
self-attention blocks in this work. It is clear that these blocks have distinct allocation dynamics
(Figure T), meaning their optimal capacities likely differ and should be investigated.

IShi et al[(2025) was released after March 1st 2025, and is thus considered contemporaneous work under
NeurIPS 2025 guidelines, however, we cite it here for completeness.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims made regarding model performance and analysis of model behavior
are supported by our experiments in image and video generation, as detailed in
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss our method’s limitations and propose suggestions for future work

based on these in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details of the method architecture and hyperparameters are detailed in
for which we use the same model configuration as [Peebles and Xie| (2023) for all
non-novel components.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not currently release our codebase, however, our work requires a simple
extension to an existing, open-source codebase, which we cite in our work. This can be
easily completed from the provided method description to reproduce all of our results, and
we plan to release code upon publication of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These are detailed in the “Experimental Setup” paragraph of each evaluation
subsection.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the emergent properties of large-scale generative models, all of our
experiments use large models that are significantly computationally expensive to train. In the
case of our video model experiments, these require multiple days over 8 H100 GPUs, costing
thousands of dollars. This means we do not train multiple models to derive confidence
intervals in performance. While we could have trained models at smaller scale to allow this,
it is unclear whether the insights derived would have been useful, as these model would
have had very poor performance. We note that our image generation experiments contain
multiple models at varying capacity, giving an estimate of the variance of our evaluation
metrics across the model class.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an estimate of the computational requirements of our experiments
in
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and believe the work conforms with it
entirely.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [NA]

Justification: There is no societal impact of the work performed, as it is an technical
advancement to an existing generative modeling approach.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release data or models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cite both datasets used in our experiments, Imagenet (Deng
et al.,[2009) and the 1X World Modeling Challenge (1Xl 2025)).

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use human subjects for any of our experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects for any experiments.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs for any important or original components of our research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Router Score Distribution

Block 0 Block 1 Block 2 Block 3

0.0 0.5 1.0 0.0 0.5 10 0.000!0 05 10 O'OOO!O 05 10
1.00- 1.00 Block 6 1.00- Block 7
0.75-
0.50-
0.25-
0.00 0.00 : \ 0.0 ; \
0. 0.0 0.5 1.0 0.0 0.5 1.0
Block 10 Block 11

1.00
0.754
0.50
0.25

0.00 T \  0.00 T \  0.00 T \
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
1.00- Block 13 Block 14
0.75
050\ 7777 T~ 050041
0.25
0.00 T \ T \
0.0 0.5 1.0 0.5 1.0
Block 17 Block 18

T 1
0.5 1.0

Score Threshold T

Target Capacity

12.5%
w— 25%
— 50%
0.00-f I | 0.00+ I \
0.0 0.5 1.0 0.0 0.5 1.0
Score Threshold T Score Threshold T

Figure 8: Per-block router scores for various SparseDiT-L/2 router capacities—score distribution
varies in each block, but most blocks learn a target threshold close to 0.5, making it suitable as a
default value.
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B Further ImageNet Performance
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Figure 9: ImageNet performance.

C Router Capacity Correlations
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(a) 12.5% capacity.
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(b) 50% capacity.

Figure 10: High-loss patch and image classes are allocated more compute—mean routing percentage
for patch and image classes is shown, with only the MLP routing percentage being shown for image
classes due to the self-attention capacity being constant per sample. Notably, the outlier patch classes
(maximum loss, plus maximum and minimum routing percentage) are the same for both 12.5% and

25% capacity models (Figure 3).
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